

Predicting Biofilm Resistance of UV-Curable via the Lifshitz–van der Waals/Lewis Acid-Base Approach

E.B. Henry, A. A. Mahmood, T. Brian Cavitt, Margaret veers, wenting wei

Department of Chemistry and Biochemistry; Lipscomb University

Radtech 2016

16 may 2016

Background

- Biofilm resistant coatings are often used in healthcare to reduce risk of infection related to the use of catheters, coronary stents, and IV delivery systems (Schabrun, 2009, p. 236)
- Majority of patented biofilm resistant coatings use metallic biocidal materials (Sawan, et al, 1998; Zupkas, 1999; Sawan et al, 2000; Sawan, et al, 2001)
- UV-curable static coatings eliminate leaching and consumption of heavy metals

Goals

Demonstrate biofilm resistant characteristics of UV-curable polymer coatings

Determine surface free energy of bacteria and polymer coatings

Determine smoothness of polymer coatings

Evaluate trends for potential design criteria for biofilm resistant UVcurable polymer coatings

Contact Angles and the Sessile Drop Method

- 2 μL solvent drop
- Macro photography (iPad)
- Angle measurement software

Water on Aluminum

DMSO on Cold Rolled Steel

Easy Release Properties

• Surface component interactions with each other more favorable than with solvent / other surface

- Low surface energy due to favorable interactions of coating
- Large contact angle due to strong cohesive forces within the liquid
- Expected to influence interaction of bacteria and polymer coatings

General Reaction Scheme

Pendant groups:

- Phenyl (PA)
- 3-Chlorophenyl (3CPA), 4-Chlorophenyl (4CPA)
- 2,4-Dichlorophenyl (DCPA)
- 4-Bromophenyl (BPA)
- 2,4-Dibromophenyl (DBPA)
- 4-lodophenyl (IPA)

Application and Curing Process

Automated drawdown application to varying substrates:

- °Lenetta charts, glass, plastic, steel
- °100 μm (4 mil)
- **Fusion Lighthammer**
- Ambient and N₂ purge
- Medium pressure Hg UV source
- Cured onto metal, plastic, and glass

AFM

distance approximating 1.0 µm for surgical grade, electropolished steel.

Biological Results

S. aureus	Std. Commercial	20% PA	20% DBPA	
Uncoated				
Coated				

Biofilm Formation Results

	E. Coli	Staph	Pseudo	Salmon	Strep	
Stand.	Р	Р	F	Р	Р	
PA	S	F	S	S	S	
ЗСРА	S	S	S	S	F	
DCPA	F	F	F	F	Р	
BPA	Р	Р	S	S	Р	
DBPA	F	Р	Р	Р	Р	

P = Pass; less growth than uncoated

- S = Same; same growth as uncoated
- F = Fail; more growth than uncoated

Modified Young's Equation

$$(1 + \cos \theta_{sl})\gamma_{l}^{tot} = 2\left(\sqrt{\gamma_{s}^{LW}\gamma_{l}^{LW}} + \sqrt{\gamma_{s}^{+}\gamma_{l}^{-}} + \sqrt{\gamma_{s}^{-}\gamma_{l}^{+}}\right)$$
Lifshitz-van der Waal's γ^{LW}
• Lewis Acid γ^{+}
Dipole-Dipole:
• Lewis Base γ^{-}

Carel J., Van Oss. Interfacial Forces in Aqueous Media. New York: M. Dekker, 1994. Print.

Liquid Characterization

Liquid	Structure	γ_{I}^{tot}	γ_{l}^{LW}	γ_{I}^{AB}	γ_{I}^{+}	γī
Bromonaphthalene	Br	44.4	44.4	0.0		
Dimethylsulfoxide	O S S	44	36	8	0.5	32
Water	H ₂ O	72.8	21.8	51.0	25.5	25.5

Lide, D.R. CRC Handbook of Chemistry Physics, 90th ed,; Boca Raton: Florida, 2009: pp 6-162-6-164.

Order of Application

1.) **Bromonaphthalene** (Apolar solvent)

2.) **DMSO** (Monopolar Lewis Base)

3.) Water

(Lewis Acid and Base Parameter)

• Apolar solvent with negligible values for γ_1^+ and γ_1^-

2) Dimethyl sulfoxide (DMSO)

• Solvent with γ_1^+ that can be approximated as zero

$$\gamma_{s}^{+} = \frac{\left[\frac{1}{2}(1 + \cos\theta_{sl})\gamma_{l}^{tot} - \sqrt{\gamma_{s}^{LW}\gamma_{l}^{LW}}\right]^{2}}{\gamma_{l}^{-}}$$

H₂O 3) Water

Any solvent

• Water selected for ease of contact angle analysis

$$\gamma_{s}^{-} = \frac{\left[\frac{1}{2}(1+\cos\theta_{sl})\gamma_{l}^{tot} - \sqrt{\gamma_{s}^{LW}}\gamma_{l}^{LW} - \sqrt{\gamma_{s}^{+}}\gamma_{l}^{-}\right]^{2}}{\gamma_{l}^{+}}$$

Determination of Surface Free Energy

$$\gamma_s^{AB} = 2\sqrt{\gamma_s^+ \gamma_s^-}$$

$$\gamma_{s} = \gamma_{s}^{LW} + \gamma_{s}^{AB}$$

Carel J., Van Oss. Interfacial Forces in Aqueous Media. New York: M. Dekker, 1994. Print.

PA

18

Comparison of Experimental Results to Surface Free Energy Determinations

Greatest Experimental Biofilm Resistance

DBPA > BPA > PA

Lowest Surface Free Energy

DBPA: 39.17 mJ/m²

- PA: 40.59 mJ/m^2
- BPA: $43.61 \text{ mJ}/\text{m}^2$

Smoothness

DBPA: 0.7102 µm

BPA: 1.5117 µm

PA: 5.133 µm

Application to Formulation Design

- •Useful in combining resistance to different bacteria (i.e., combine polymer most resistant to *E. coli* with polymer most resistant to *S. aureus*).
- Determine the cosine of the contact angle for each component

$$\cos\theta_{sl} = \frac{2\left(\sqrt{\gamma_s^{LW}\gamma_l^{LW}} + \sqrt{\gamma_s^+\gamma_l^-} + \sqrt{\gamma_s^-\gamma_l^+}\right)}{\gamma_l^{tot}} - 1$$

Apply Cassie's Equation to predict cosine of contact angle of mixture

$$\cos\theta_{tot} = f_1 \cos\theta_1 + f_2 \cos\theta_2 + \dots + f_n \cos\theta_n \qquad \qquad f_1 + f_2 + \dots + f_n = 1$$

Drelich, J., Wilbur, J.L., Miller, J.D., & Whitesides, G. M. Langmuir, 1996. 12, 1913-1922.

Future Work

Concentration studies (All presented contained 20 wt% halogenated monomers)

 Additional bacteria surface free energy analyses (Clarify trend of surface free energy, biofilm resistance)

Acknowledgements

- Department of Chemistry and Biochemistry
- Lipscomb University, Nashville, TN
- Department of Chemistry and Biochemistry
- Abilene Christian University, Abilene, TX
- Department of Biology
- Lipscomb University, Nashville, TN
- Previous Researchers Affiliated with ACU:

Sam Gee, Grayson Hurst, Zachary Beggs, Luke Cooksey, Drew Dossett